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Abstract DE
Im Rahmen des Vertiefungsmoduls II des Master of Science in Engineering beschäftigt sich die
vorliegende Arbeit mit der Erzeugung von Hintergrundmusik für Videospiele. In den letzten
Jahren wurden große Fortschritte bei der Erzeugung von Bildern, Videos und Text erzielt. Die
Erzeugung von Musik hat einige bemerkenswerte Unterschiede zur Erzeugung von Bildern und
Videos. Musik ist eine Kunst der Zeit, die ein zeitliches Modell erfordert. Musik besteht in
der Regel aus mehreren Instrumenten/Spuren mit einer eigenen zeitlichen Dynamik. In einem
Kollektiv entfalten sie sich im Laufe der Zeit in wechselseitiger Abhängigkeit. In mehrstimmiger
Musik werden Musiknoten oft zu Akkorden oder Melodien gruppiert.

In dieser Arbeit wurden bestehende Systeme erweitert und kombiniert, die es erlauben, Mu-
sik auf Basis eines Bildes zu erzeugen. Zur Vereinfachung wurde der Datensatz auf ein einziges
Videospiel reduziert, mit dem die grundsätzliche Machbarkeit bewiesen wird.

Das Model wurde mit 35 Songs und rund 50’000 Screenshots aus dem Nintendo 64 Spiel “The
Legend of Zelda: Ocarina of Time” trainiert.

Die Ergebnisse zeigen, dass das Model die Songs zum Teil sehr gut wiedergeben kann. Auf-
grund der Überanpassung des Models ist es jedoch nicht in der Lage, zu neuen Screenshots die
bis anhin noch unbekannte Musik vorauszusagen.

Durch eine Vergrösserung des Datensatzes, der Ausweitung auf mehrere Videospiele und einer
Optimierung des Models sollte es zukünftig möglich sein, dieses Problem zu lösen.
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Abstract EN
In the context of the second project work of the Master of Science in Engineering, this thesis
deals with the creation of background music for video games. Recent years have seen major
progress in generating images, videos and text. Generating music has a few notable differences
from generating images and videos. Music is an art of time, requiring a temporal model. Music
is usually composed of multiple instruments / tracks with their own temporal dynamics. In a
collective they unfold over time interdependently. Musical notes are often grouped into chords,
arpeggios or melodies in polyphonic music.

In this work, existing systems were extended and combined, allowing music to be created on
the basis of an image. For simplification, the data set was reduced to a single video game to
prove the general feasibility.

The model was trained with 35 songs and about 50’000 screenshots from the Nintendo 64 game
“The Legend of Zelda: Ocarina of Time”.

The results show that the model can reproduce the songs very well in some cases. However,
due to the overfitting of the model it is not able to predict the music, which has not been known
so far, for new screenshots.

By enlarging the data set, extending it to several video games and optimizing the model, it
should be possible to solve this problem in the future.
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1. Introduction

1.1. Motivation
For decades, researchers have approached the task of algorithmic music generation using com-
putational models [10]. One common approach to this task is to generate samples sequentially
using a probability model. It takes a corpus of training data to learn a probability distribution
of the most likely notes to be played at each time step.

Recent years have seen major progress in generating images, videos and text, notably using
a generative adversarial network (GAN). Along with autoencoders, GANs are nowadays popular
models for generating musical sequences. So far, the focus has mostly been on monophonic music.

Recently, the generation of polyphonic music has also moved into focus. Based on the latest
findings, this thesis will examine to what extent this can be applied to video games. This work
tries to go one step further and will try to generate music in dependence of an image. Thus,
for each screenshot from a video game the appropriate background music is supposed to be
generated.

1.2. Music in Video Games
The music in video games varies widely and is difficult to generalize. In order to simplify the
definition, the focus is moved to a single game, which also serves as a data set later (see chapter
3.2).

For this work, the game “The Legend of Zelda: Ocarina of Time”, one of the most popular
games on the Nintendo 64 console, was chosen.

Figure 1.1.: Logo of “The Legend of Zelda: Ocarina of Time”, Source: Gamepedia 1

1https://gamepedia.cursecdn.com/zelda_gamepedia_en/thumb/3/34/OoT_Black_Logo.png/603px-OoT_Black_
Logo.png

Manuel Jordan 2 02.02.2010



Generating Background Music from Video Game Screenshots

With regard to this game, it can be said that music basically depends on three factors:

location: the level or dungeon you are in, the atmosphere

time: day-night cycle, it is quieter at night than during the day

situation: enemy/boss fight, occurrence of an emotional event

1.2.1. Ambiguity of screenshots
A melody cannot always be clearly assigned to a picture. Different themes are possible for the
same scene, depending on the situation in the game e.g.:

• low health, short breath, short time

• events

• fights

• in-game music, e.g. someone in the game plays an instrument

This problem can be avoided by focusing only on the main theme of the level and not including
the situation-dependent melodies in the data set at all.

1.2.2. Ambiguity of music
The same music can be played at different levels or used several times for different situations. It
is also possible that the music is played in the same place, but the place itself varies greatly.

A good model should actually be able to deal with this problem. The prerequisite is a suffi-
ciently large data set.

1.3. Music Representation
1.3.1. Waveform
The most common way to store and play music is by using its waveform. Usually, the waveforms
are represented with the pulse-code modulation (PCM), a method to digitally represent sampled
analog signals.

1.3.2. Musical Instrument Digital Interface (MIDI)
Standard Musical Instrument Digital Interface (MIDI) Files contain all the MIDI instructions to
generate notes, control individuals volumes, select instrument sounds, and even control reverb
and other effects. The files are typically created by a "MIDI sequencer" (software or hardware)
and then played on some kind of MIDI synthesizer.

Unlike digital audio files (.wav, .aiff, etc.) or even compact discs or cassettes, a MIDI file does
not need to capture and store actual sounds. Instead, the MIDI file can be just a list of events
which describe the specific steps that a soundcard or other playback device must take to generate
certain sounds. This way, MIDI files are much smaller than digital audio files, and the events are
also editable, allowing the music to be rearranged, edited, even composed interactively, if desired.

The format also allows tagging the file and the data in the file with copyright notices and
other text “meta-events”.

All popular computing platforms can play MIDI files (*.mid) and there are thousands of web
sites offering files for sale or even for free. Anyone can make and share a MIDI file, using software
that is readily available on smart phones, tablets and computers. [2]
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2. State of the Art

2.1. Introduction
Generating music has a few notable differences from generating images and videos. Music is an
art of time, requiring a temporal model. Music is usually composed of multiple instruments /
tracks with their own temporal dynamics. In a collective they unfold over time interdependently.
Musical notes are often grouped into chords, arpeggios or melodies in polyphonic music.

For decades, researchers have approached the task of algorithmic music generation using com-
putational models [10]. One common approach to this task is to generate samples sequentially
using a probability model. It takes a corpus of training data to learn a probability distribution
of the most likely notes to be played at each time step.

Recent years have seen major progress in generating images, videos and text, notably using
GANs. Along with autoencoders, GANs are nowadays popular models for generating musical
sequences. So far, the focus has mostly been on monophonic music.

This review will subsequently examine six different approaches to generate polyphonic music.
All the presented models are based either on a GAN or on a autoencoder.

2.2. Classifying Variational Autoencoder
The first paper [6] introduces the variational autoencoder (VAE), which are popular probabil-
istic generative model. One drawback of VAEs is that the latent variables cannot be discrete,
which makes it difficult to generate data from different modes of a distribution. The researchers
propose an extension to existing VAE models to get around this problem.

Jay A Hennig et. al start with preliminary clarifications on polyphonic music and the twelve
pitch classes in western music. The key of a piece is the group of these classes that forms the
basis of a music composition.

For the model to stay in key during the whole clip the researchers incorporate an additional
continuous latent variable. This variable represents the inferred probability of the data belong-
ing to each of d distinct classes (e.g., d is the number of keys). The paper provides comprehensive
mathematical definitions of the classifying model.

To generate sequential data the model is extended with a long short-term memory (LSTM).

The evaluation focuses on the key consistency of the generated music. A comparison of dif-
ferent models shows that the classifying VAE generally performs better than standard VAEs.

The researchers admit that they have made the simplifying assumption that the key of a partic-
ular musical sequence is fixed over the length of the sequence. In future, they want to include a
possibility to predict and apply key changes.
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2.3. Hierarchical Variational Autoencoder
In this paper [11] Adam Roberts, Jesse Engel and Douglas Eck from Google AI developed a
recurrent VAE trained to reproduce short musical sequences. The resulting model is called “Mu-
sicVAE” and is part of the open-source project “Magenta” from Google AI. [1]

They focus their work on three models:

1. 2-bar “loops"

2. 32-bar lead melodies

3. 16-bar “trios" consisting of lead, drums and bass

It should be noted that only the latter is able to produce polyphonic music. But this model is by
definition restricted to only three tracks. The individual tracks themselves are not polyphonic.
Unlike other models, theirs is able to interpolate between two given samples. An example is
provided with a visual representation in the paper.

The autoencoder uses a hierarchical decoder with LSTMs. For the three-track model each in-
strument has its own LSTM decoder.

The datasets for training were built from publicly-available MIDI files, with a 4
4 time signa-

ture. The bars are quantized to 16 notes. In the appendix of the article, the researchers specify
the exact model construction and all required training parameters.

The paper lacks comprehensive evaluation results. Only a few reconstruction accuracies are
given. No detailed examination of the quality of the generated clips is provided.

The researchers conclude that their work will enable numerous innovative interactions for musical
creativity. They also note that it should be possible to extend the work to model true polyphonic
music.

2.4. WaveNet Autoencoder
The next paper [5], also from Google AI, Jesse Engel et. al describe an autoencoder based
on WaveNet [14], a generative approach to probabilistic modeling of raw audio. The primary
motivation for this approach is to achieve a consistent long-term structure without external
conditioning. The researchers claim that it is possible to generate new types of expressive and
realistic instrument sounds with their neural network model.

The paper introduces the existing WaveNet model with its current drawback: It needs external
conditioning to achieve a long-term structure. The researchers remove this need by embedding
the model in an autoencoder. They use a temporal encoder with non-causual dilated convolu-
tions. The model takes a spectrogram as an input, which is encoded in a latent space. The
WaveNet acts as a decoder and tries to recreate the original input. The paper provides basic
training parameters and describes the exact structure of the model.

The evaluation of the model consists of three tasks:

1. note reconstruction

2. instrument interpolation

3. pitch interpolation

Manuel Jordan 5 02.02.2010
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The paper lists a few instrument spectrograms for the reader to compare the original and the
reconstruction.

The researchers conclude that their WaveNet autoencoder is a powerful representation for mu-
sic. They show that their model is able to reconstruct a ten-second piece of polyphonic music,
even though it was never trained on more than one note at a time or on clips longer than four
seconds. As evidence, they subjectively compare the original and the reconstructed spectrogram.

One open problem are memory constraints, which make the model unable to fully capture global
context.

2.5. Polyphonic SeqGAN
In their paper [8] Sang-gil Lee et. al want to extend an existing sequence generative adversarial
network (SeqGAN) to incorporate polyphony to the previously monophonic outputs.

In the original work [15] the SeqGAN was proposed as a combination of a recurrent neural
network (RNN) and a convolutional neural network (CNN). The RNNs act as a sequence gener-
ator and the CNNs as a discriminator that identifies whether a given sequence is a real sample
or a generated one.

To use SeqGAN as a polyphonic music generator the researchers developed an efficient rep-
resentation of a polyphonic MIDI file. They were able to simultaneously capture chords and
melodies with dynamic timings. The basic idea behind this representation is to convert the
MIDI file into a token sequence. A token combines the duration, the octave of the note, the
pitch of the note, the octave of the chord and the pitch of the chord of a time step in a single
integer. This sequence can be learned and generated by the SeqGAN.

The authors evaluated the model with the bilingual evaluation understudy (BLEU) score. This
metric measures a similarity between the validation set and the generated samples, which is
largely used to evaluate the quality of machine translation. In a user study they asked 42 par-
ticipants to rate seven different sequences from 1 to 5, by responding to three questions: How
pleasant is the song? How realistic is the sequence? How interesting is the song?

Despite the fairly good results, the paper points out a drawback caused by the nature of GANs.
They often suffer from the mode collapsing problem, where the generator fools the discrimin-
ator by creating artifacts rather than realistic samples. This behavior also appeared with the
SeqGAN, where generated samples played the same note constantly, which broke the musical
coherence.

2.6. MuseGAN
In their paper [4] Hao-Wen Dong et. al propose a GAN-based model. The researchers claim they
developed the first model that can generate multi-track, polyphonic music.

The paper focuses on the modeling of multi-track interdependency and the temporal structure.
For M tracks the bar generator takes as input four different types of random vectors:

1. an inter-track time-independent random vector

2. an inter-track time-dependent random vector

3. M intra-track time-independent random vectors

4. M intra-track time-dependent random vectors

Manuel Jordan 6 02.02.2010
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Figure 2.1.: System diagram of the proposed MuseGAN model [4][p.37]

All tracks have private intra-track vectors and share the inter-track vectors, The time-dependent
vectors are fed into a temporal structure generator. The output is concatenated with the time-
independent vectors and used as input for the M bar generators.

The authors evaluated the model with self-defined objective metrics:

EB ratio of empty bars (in %).

UPC number of used pitch classes per bar (from 0 to 12).

QN ratio of “qualified” notes (in %). The paper considers a note no shorter than three time
steps (i.e. a 32th note) as a qualified note.

The results where completed with a user study with 144 participants. 44 of them are rated
"pro user", according to a simple questionnaire probing their musical background. The probands
rated nine generated clips in terms of whether they 1) have pleasant harmony, 2) have unified
rhythm, 3) have clear musical structure, 4) are coherent, and 5) the overall rating.

The researchers conclude that their model is musically and aesthetically still behind the level
of human musicians. But the proposed model has a few desirable properties and they hope
follow-up research can further improve it.

2.7. Learning a Latent Space of Multitrack Measures
In their paper, Simon, Roberts, Raffel, Engel, Hawthorne and Eck from Google AI present a
new way of generating polyphonic music [13]. They use a hierarchical VAE with a recurrent
decoder. Their previous work with music generation [11] serves as starting position. The re-
searchers extended their existing model with a new music representation. Like his predecessor,
the “multitrack MusicVAE” is aslo part of the open-source project “Magenta”. [12]

The model can handle up to 8 tracks with variable numbers of events per track. In contrast
to the original system, the new one can play 128 different instruments, limited by the specifica-
tion of MIDI 1.0. The restriction to a 4/4 time signature is the same as for the predecessor.

Since the model is based on an autoencoder, it is possible to perform these latent space op-
erations:

sampling: generate a sequence with a random input vector

interpolation: synthesize two musical sequences in a semantically meaningful way compared to
naively blending the notes together

attribute vector arithmetic: add and subtract attribute vectors (e.g. note density)
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chord conditioning: change the harmony while keeping the instrumental choice and rhythmic
pattern

The authors claim that their model is the first one capable of generating full multitrack poly-
phonic sequences with arbitrary instrumentation. They refer to their project page [12] where the
reader can listen to some examples or create his own samples. Simon et al conclude that their
work will enable numerous innovative interactions for musical creativity.

2.8. Conclusion
These papers are addressed to experts and people with existing knowledge. A basic knowledge
of neural networks is required to understand them.

It can be said that there are mainly two approaches for generating polyphonic music: the con-
struction of individual notes resulting in a MIDI file and the the generation of a spectrogram.
The former approach is usually based on a recurrent network packed in a generative model like
an autoencoder or a GAN. The latter is based on WaveNet, which handles spectrograms. It
should be noted that the presented hierarchical VAE [11] is not a truly polyphonic model.

The examined models focus on different aspects: key consistency [6], track / instrument in-
terdependency [4][5], interpolability [11] and note representation [8].

A problem that all of these papers have is that generated music cannot be thoroughly eval-
uated in practice. The researchers can show for every model the reconstruction accuracy, but
the quality of newly generated music is partially based on subjective perception. Both GAN-
based model where credibly evaluated with a user study.

The most promising of all examined models is the multitrack VAE from Google AI [13]. Un-
fortunately it is only able to create 2 second long samples. There are other multitrack models,
which generate samples more than 10 seconds long. The biggest competitor is probably MuseGan
[4]. Both models use a latent space shared across multiple tracks to handle interdependencies
between instruments. However, in MuseGAN, the set of instruments is a fixed quintet comprising
bass, drums, guitar, piano, and strings. Simon et al’s model can handle any arbitrary instrument
combination. In contrast to MuseGAN it allows latent space operations and can represent or
manipulate preexisting music.

These points are the greatest strengths of multitrack VAE. The interactive examples provide
a taste of what is possible with this model. This is yet another step forward towards a generator
for truly polyphonic, multi-instrumental music which will be indistinguishable from man-made
compositions. It will not take long before Google AI will expand the model, so that it can
generate longer sequences and handle more than 8 instruments at a time.
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3. Methods

3.1. Concept
The task of the thesis can be divided into two subproblems: extract useful information from an
image and generate music from this information.

The multitrack MusicVAE is used as the basic model for music production, as it is the most
promising of all examined models (see chapter 2.8).

Figure 3.1.: Schematic view of the MusicVAE

Theoretically this model could be trained from scratch, but Google AI already offers pre-trained
checkpoints for the different MusicVAE configurations 1. It turns out that a pre-trained model
can reproduce the data set compiled for this work very well (see chapter 3.2.1). Therefore further
training of the MusicVAE model is not necessary.

Since MusicVAE generates music from a latent, 512-dimensional vector, an upstream model
must generate a matching latent vector from a screenshot that corresponds to the desired music.
Thus the task of the thesis can be reduced to a regression problem with 512 output variables.
For these tasks a pre-trained CNN can be used, which generates a 512-dimensional vector using
a customized fully connected network. The complete model is shown in figure 3.2.

1download.magenta.tensorflow.org/models/music_vae/multitrack/*
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Figure 3.2.: Schematic view of the entire network

3.2. Training Data
To train the neural network, a data set must be created that maps a 512-dimensional vector to
each input image. These vectors can be generated using the MusicVAE encoder. The acquisition
and preparation of training data is explained below.

3.2.1. Data Acquisition
The model used requires MIDI files. In a first step, as many songs as possible were collected in
MIDI format for the selected game “The Legend of Zelda: Ocarina of Time”. Two providers were
identified, each offering a collection of tens of thousands of MIDI files for many video games on
different platforms:

• KHInsider [7]

• VGMusic [9]

This thesis focuses only on one game, but in the future much more powerful models could be
trained using the existing data of these providers.

The source for the screenshots is a letsplay, taken from the youtuber ZorZelda [16], which provides
about 10 hours of video material of the whole game. When choosing the letsplay it was made
sure that there are no additional overlays on the video and that the gameplay is straight forward,
so that no stationary images are created.

3.2.2. Data Processing
For the data set, the frames from the video must be mapped to the respective latent vector of
the corresponding music. The rough process is shown in figure 3.3.
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Figure 3.3.: Schematic view of the dataset creation

At first all MIDI files must be divided into bars, because the MusicVAE processes only single
bars. The Magenta framework of Google AI offers a suitable function for the MusicVAE. In this
process some songs are sorted out that MusicVAE cannot handle. From all parsed bars one per
song must be selected manually. Normally the first bar of the chorus or the most recognizable
melody is always selected.

A total of 35 songs were prepared in this way. Afterwards the latent vector was generated
for each song with the encoder of the multitrack MusicVAE. For comparison purposes each vec-
tor was decoded again. A list of all songs with an sample frame can be found in the appendix
under chapter A.2.

The reconstructed songs were compared with the original ones to make sure that no too big
losses occurred. No negative outliers were found. Figure 3.4 shows an example of the compar-
ison of the original and the reconstruction of a song.

(a) original (b) reconstruction

Figure 3.4.: Reconstruction of the song “Bolero of Fire”

To ensure the multivariate normal distribution of the latent space, the distribution of all 35∗512 =
17′920 latent variables of the latent vectors was calculated (see figure 3.5).
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Figure 3.5.: Distribution of latent variables

The videos of the letsplay must be cut in parts and assigned to the corresponding songs. For
each song frames are extracted from the segments. It is made sure that each song is assigned
at least 500 and at most 5000 frames. Due to the length of the segments, the frequency of the
extracted frames varies between 3.5fps and 25fps (thus each frame). In total nearly 50000 frames
were extracted.

Each frame is cut out rectangularly to remove the graphic overlays (see figure 3.6). For the
training all frames are scaled to 150x150 pixels.

(a) original frame with cropping indication (b) cropped frame

Figure 3.6.: Rectangular frame cropping

Each frame is mapped with the corresponding latent vector. After shuffling, the complete data
set is divided into training, validation and test set at a ratio of 80/10/10.

3.3. Models
In this chapter the previously outlined model is defined more precisely. The focus lies on the
first half of the model, shown in figure 3.7.
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Figure 3.7.: Schematic view of the base network

As feature extractor the InceptionResNetV2 2 is used. It is the best performing model provided
by the Keras API. With an input tensor of (150x150x3) the feature extractor provides a feature
tensor of (3x3x1536).

In the following five different network topologies are listed, which map the feature tensor to
the (512x1x1) latent vector.

3.3.1. Type 1
Type 1 is the simplest model. It directly connects the flattened tensor with the output layer.

Figure 3.8.: Model Type 1

3.3.2. Type 2
Type 2 extends the Type 1 model by a hidden layer. Due to the size of the input tensor the
number of parameters is enormous.

2https://keras.io/applications/#inceptionresnetv2
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Figure 3.9.: Model Type 2

3.3.3. Type 3
Type 3 extends the Type 1 model by a convolutional layer. A 1x1 convolution is performed to
reduce the input tensor and thus the number of parameters.

Figure 3.10.: Model Type 3

3.3.4. Type 4
Type 4 extends the Type 3 model by a hidden layer. In comparison to Type 2 it has much less
parameters thanks to the 1x1 convolution.

Figure 3.11.: Model Type 4

3.3.5. Type 5
Type 5 extends the Type 4 model by a further hidden layer and is therefore the deepest of all
topologies presented.

Manuel Jordan 14 02.02.2010



Generating Background Music from Video Game Screenshots

Figure 3.12.: Model Type 5

3.3.6. Configurations
The presented model types can be parameterized differently. The table 3.1 shows the respective
parameters.

Input Layer Convolutional Layer Dense Layer Output Layer

Type 1 3x3x1536 - - 512

Type 2 3x3x1536 - HEIGHT 1 512

Type 3 3x3x1536 3x3xDEPTH - 512

Type 4 3x3x1536 3x3xDEPTH HEIGHT 1 512

Type 5 3x3x1536 3x3xDEPTH HEIGHT 1, HEIGHT 2 512

Table 3.1.: Architecture of all base models

Based on the basic types, 11 different configurations were defined. The table 3.2 lists all configur-
ations with the corresponding parameters. Figure 3.13 shows a code snippet with the definition
of the models in python.

All hidden layers are assigned the tangent hyperbolicus as activation function. The output
layer must be activated linearly, so that an N(0,1) normal distribution of the output variables is
possible.
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1 SHAPE = (IMG_WIDTH,IMG_HEIGHT,IMG_CHANNEL)
2 conv_base = InceptionResNetV2(include_top=False, weights=’imagenet’,

input_shape=SHAPE)
3 conv_base.trainable = False
4

5 model = tf.keras.Sequential()
6 model.add(conv_base)
7

8 #Convolutional Layer [OPTIONAL]
9 model.add(layers.Conv2D(DEPTH, (1,1), activation=’tanh’))

10

11 #Flatten
12 model.add(layers.Flatten())
13

14 #Hidden Layer [OPTIONAL]
15 model.add(layers.Dense(HEIGHT1, activation=’tanh’))
16 model.add(layers.Dense(HEIGHT2, activation=’tanh’))
17

18 #Output vector
19 model.add(layers.Dense(512, activation=’linear’))
20

21 #Configure a model for mean-squared error regression.
22 model.compile(optimizer=tf.train.AdamOptimizer(LEARNIG_RATE), loss=’mse’)

Figure 3.13.: Definition of the models in python using Keras

Name Base Model DEPTH HEIGHT 1 HEIGHT 2 # Params

0 Type 1 - - - 7’078’400

1024 Type 2 - 1024 - 14’681’600

2048 Type 2 - 2048 - 29’362’688

60c Type 3 60 - - 369’212

100c Type 3 100 - - 615’012

200c Type 3 200 - - 1’229’512

60c-512 Type 4 60 512 - 631’868

100c-768 Type 4 100 768 - 1’239’396

200c-1024 Type 4 200 1024 - 2’676’424

60c-512-512 Type 5 60 512 512 894’524

100c-768-768 Type 5 100 768 768 1’829’988

Table 3.2.: Configuration of all trained models

A list of all training runs with the specified learning rate and the best validation error and
associated test error can be found in the appendix under chapter A.1.
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4. Results

4.1. Training
As expected, the larger models achieve a lower validation error. However, no model can achieve
a validation error below 0.15. The test error is only slightly higher for each configuration. A list
of all training runs with the specified learning rate and the best validation error and associated
test error can be found in the appendix under chapter A.1.

The relationship between model size and performance (measured with the test error) is shown
in figure 4.1.

0.5 1 1.5 2 2.5 3
·106

0.15

0.2

0.25

0.3

Number of params

Er
ro
r

Figure 4.1.: Test error of all trained models

As can be seen in figure 4.2, all configurations tend to overfit strongly. For the larger models,
the train error can be reduced almost to 0, while the validation error never falls below 0.15. The
best performing models shown in figure 4.2 are listed in table 4.1.

(a) Train error (b) Validation error

Figure 4.2.: Train and Validation Error of the best performing models
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Color Config Name learning rate (LR) # Params Val Error Test Error

Red 60c-512 0.00003 631868 0.1994 0.2007

Blue 60c-512-512 0.0001 894524 0.1771 0.1814

Green 100c-768-768 0.0001 1829988 0.1562 0.1577

Table 4.1.: Best performing models

For the following analysis the model 60c-512 is used, which reaches a test error of 0.2007 with
631’868 parameters. It is not much worse than the model with the peak value of 0.1577, but
massively smaller.

4.2. Song Reconstruction
In order to qualitatively test the performance of the model 60c-512, individual frames for various
songs were taken from the test set and converted from the model to a melody. The figures 4.3
and 4.4 show the reconstruction of one song each. Here the original melody, the reconstruction
by MusicVAE, the prediction with a train set frame and the prediction with a test set frame are
compared. The song “Bolero of Fire” has a train error of 0.0097 and a test error of 0.1737. The
song “Market” has a train error of 0.0059 and a test error of 0.0801 and is therefore the best
performing song (see chapter 4.3). Two further reconstructions can be found in the appendix
under chapter B.1.

(a) original (b) original reconstruction

(c) prediction reconstruction, train set (d) prediction reconstruction, test set

Figure 4.3.: Reconstruction of the song “Bolero of Fire”
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(a) original (b) original reconstruction

(c) prediction reconstruction, train set (d) prediction reconstruction, test set

Figure 4.4.: Reconstruction of the song “Market”

To determine the extent of the overfitting, a screenshot from another game was tested. This is
“The Legend of Zelda: Majoras Mask”, the direct successor to “The Legend of Zelda: Ocarina
of Time”. The frame was taken from level “Stone Tower Temple” (see figure 4.5). The figure 4.6
shows that the prediction has no similarity at all to the original.

Figure 4.5.: Test frame from “The Legend of Zelda: Majoras Mask”

Due to the overfitting the model fails miserably on this song as expected. The test error is 1.0508.
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(a) original (b) original reconstruction

(c) prediction reconstruction

Figure 4.6.: Reconstruction of the song “Stone Tower Temple”

4.3. Song Comparison
In the following all songs are compared with each other. The figure 4.7 shows the test error
for each song. It can be seen that the songs are sometimes very different. The test error varies
between 0.04 and 0.6. The high values can be explained by the fact that the frames of the
corresponding songs are harder to distinguish from the others or generally have less distinctive
features.
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Figure 4.7.: Test error of songs
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5. Discussion

5.1. Evaluation
The results from chapter 4.7 show that the model is basically able to assign the appropriate
background music to a model. However, the performance of the whole model is limited by the
decoder of the MusicVAE, which itself is not able to reconstruct all songs without loss.

Due to the strong overfitting (see chapter 4.1) the performance in the validation and test set
differs from the training set. Predicting melodies outside of the trained data set is not possible
in the current state.

Of all models tested, those with 1-2 hidden layers perform best. enlarging the layers brings
only minimal improvement, while the number of parameters increases significantly.

5.2. Problems
A melody cannot always be clearly assigned to an image. Different could songs correspond to
very similar screenshots. This way the songs for levels with bright colors and clear unique char-
acteristics can be predicted much more accurately.

Another problem is currently the strong overfitting. The reason for this is a too small data
set and a correspondingly too large model.

Due to the limitations of the MusicVAE, the output of the model is currently still restricted
to only one bar. Theoretically, the MusicVAE can be extended to several bars, but it must first
be trained from scratch with a large data set.

5.3. Future Work
In order to increase the performance of the presented model, it will be possible in the future to
start at different positions.

• optimization of the network architecture through regularization and adaptation of the
topology

• extending the data set to multiple video games (see chapter 3.2.1)

• extending the data set through data augmentation

• improve the performance of the VAE by training it with songs from the data set

As a further aspect, it could also be investigated in the future to what extent graphical overlays
on screenshots have an impact on the performance.
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A. Training

A.1. Training Configurations

Config Name LR # Params Val Error Test Error

60c 0.0001 369212 0.294 0.2937

60c 0.001 369212 0.3034 0.3052

60c 0.0003 369212 0.2864 0.2872

60c 0.0002 369212 0.2849 0.2873

100c 0.0002 615012 0.276 0.2783

100c 0.001 615012 0.3028 0.3045

100c 0.0001 615012 0.2733 0.2767

100c 0.0003 615012 0.2759 0.2792

200c 0.0001 1229512 0.2701 0.2713

60c-512 0.0001 631868 0.2081 0.2096

60c-512 0.00003 631868 0.1994 0.2007

60c-512-512 0.0001 894524 0.1771 0.1814

60c-512-512 0.00003 894524 0.1984 0.207

1024 0.0001 14681600 0.1549 0.1547

1024 0.00003 14681600 0.167 0.1673

200c-1024 0.0001 2676424 0.1721 0.1763

200c-1024 0.00003 2676424 0.1755 0.1799

2048 0.0001 29362688 0.1496 0.1497

100c-768 0.0001 1239396 0.1765 0.174

100c-768 0.00003 1239396 0.1739 0.1775

100c-768-768 0.0001 1829988 0.1562 0.1577

100c-768-768 0.00003 1829988 0.1727 0.1833

60c-512-512-512 0.0001 1157180 0.1736 0.1816

Table A.1.: All training configurations
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A.2. Training Data Samples

(a) Bolero of Fire (b) Boss Battle (c) Chamber of
Sages

(d) Escape from
Ganon’s Castle

(e) Fairy flying (f) FairyFountain

(g) Fire Temple (h) Ganondorf (i) Ganondorf
Battle

(j) GerudoValley (k) Goron City (l) House

(m) Hyrule
Castle Courtyard

(n) Hyrule Field (o) Ice Cavern (p) Inside Jabu-
Jabu’s Belly

(q) Inside the
Deku Tree

(r) Kakariko

(s) Kokiri Forest (t) Lakeside
Laboratory

(u) Lost Woods (v) Market (w) Mini Game 1 (x) Mini Game 2

(y) Nocturne of
Shadows

(z) Requiem of
Spirit

(aa) Shadow
Temple

(ab) Shop (ac) Spirit
Temple

(ad) Temple of
Time

(ae) Twinrova (af) Water
Temple

(ag) Windmill
Hut

(ah) Zelda’s
Theme

(ai) Zora’s
Domain

Figure A.1.: Sample frame of each song

Manuel Jordan 28 02.02.2010



Generating Background Music from Video Game Screenshots

B. Result

B.1. Song Reconstruction

(a) original (b) original reconstruction

(c) prediction reconstruction, train set (d) prediction reconstruction, test set

Figure B.1.: Reconstruction of the song “Temple of Time”

(a) original (b) original reconstruction

(c) prediction reconstruction, train set (d) prediction reconstruction, test set

Figure B.2.: Reconstruction of the song “Windmill Hut”
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