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Abstract DE
Die prozedurale Erzeugung von realistischen Landschaften für Computerspiele ist ein lange er-
forschtes Thema. Klassische Algorithmen wie Fraktale Rauschfunktionen sind in der Lage, eini-
germassen realistisch aussehende Landschaften zu erzeugen, die aber nicht alle Merkmale von tat-
sächlichen Landschaften erhalten. Modernere Verfahren modellieren daher geologische Prozesse
wie Erosion, was aber wiederum aufwändig ist, oder überlassen es dem Designer, manuell ein
realistisches Gelände zu erzeugen.

Im Rahmen der Master Thesis des Studiengangs Master of Science in Engineering beschäftigt
sich die vorliegende Arbeit mit der Erzeugung von 3D Landschaften mittels neuronalen Netzen.
In den letzten Jahren wurden große Fortschritte bei der Erzeugung von Bildern, Videos und Text
erzielt, insbesondere durch generative kontradiktorische Netzwerke (GAN) und Autoencoder.

Dieser Arbeit führt die Idee von Christopher Beckham and Christopher Joseph Pal [3] weiter,
mittels eines GAN texturierte Höhenmodell zu generieren. Das bestehende System wurde abge-
wandelt und optimiert, weiter wurde auch ein hochwertigerer Datensatz zusammengestellt. Das
Modell wurde Satellitenbildern und Höhendaten diverser Faltengebirge trainiert. Um grössere
Landschaften zu erzeugen, wurde ein Algorithmus definiert, welcher mehrere Erzeugnisse des
Modells zusammenfügen kann.

Um die Qualität der erzeugten Landschaften zu messen, wurde eine Umfrage durchgeführt, in
welcher die Probanden echte und generierte Landschaften von einander unterscheiden sollten.
Die Ergebnisse zeigen, dass das Modell grossteils sehr realistische Bilder erzeugt. Die zusam-
mengesetzten Landschaften weisen jedoch zum Teils starke Artefakte auf und wirkten auf die
Probanden klar weniger realistisch.

Durch eine Vergrösserung des Datensatzes und des Modells, sowie durch Optimierung des zusam-
mensetzenden Algorithmus sollte es zukünftig möglich sein, dieses Problem zu lösen.
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Abstract EN
The procedural generation of realistic landscapes for computer games is a long researched topic.
Classical algorithms like fractal noise functions are able to create reasonably realistic looking
landscapes, but they do not preserve all features of real landscapes. More modern methods
therefore model geological processes such as erosion, which in turn is complex, or leave it to the
designer to manually create a realistic terrain.

In the context of the master thesis of the Master of Science in Engineering program, the present
work deals with the generation of 3D landscapes using neural networks. In recent years, great
progress has been made in the generation of images, videos and text, especially by generative
adversarial networks (GAN) and autoencoders.

This work continues Christopher Beckham and Christopher Joseph Pal’s [3] idea of generat-
ing textured elevation models using a GAN. The existing system was modified and optimized,
and a higher quality data set was compiled. The model was trained using satellite images and
elevation data of various folded mountains. In order to generate larger landscapes, an algorithm
was defined, which can combine several outputs of the model.

In order to measure the quality of the generated landscapes, a survey was conducted in which
the participants were asked to distinguish between real and generated landscapes. The results
show that the model generates very realistic images for the most part. However, some of the
composed landscapes show strong artifacts and clearly appear less realistic to the test subjects.

By enlarging the data set and the model, and by optimizing the composing algorithm, it should
be possible to solve this problem in the future.
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Acronyms
DCGAN deep convolutional generative adversarial network. 6–8, 11

GAN generative adversarial network. 1, 6, 7, 13, 14, 21, 24

GPS Global Positioning System. 1

LR learning rate. 16

NASA National Aeronautics and Space Administration. 7, 9, 24

WGS World Geodetic System. 1, Glossary: World Geodetic System
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Glossary
Alpide belt a orogenic and seismic belt that includes a series of mountain ranges along the

southern margin of Eurasia. 10

Keras open-source neural-network library written in Python running on top of TensorFlow. 12,
13, 24, 26

Tensorflow a free and open-source software library for dataflow and differentiable programming.
11, 24, 26

World Geodetic System 3-dimensional coordinate reference system for the earth. Abbrev.: WGS
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1. Introduction

1.1. Motivation
The procedural creation of realistic landscapes for computer games is a long researched topic.
Classical algorithms like fractal noise functions are able to create reasonably realistic looking
landscapes, but they do not preserve all the features of real landscapes. More modern methods
therefore model geological processes such as erosion, which in turn is complex, or leave it to the
designer to manually create a realistic terrain.

In this thesis we will investigate how generative adversarial networks (GANs) or similar methods
can be used to create 3D terrains. A special problem is that large models should be generated,
which often cannot be achieved by a single application of the method. Several terrains should
therefore be able to be joined together.

1.2. Objective
In this thesis, methods are to be developed to generate realistic terrains with height and texture
data using machine learning approaches. For this purpose, a data set consisting of real world
data will be searched for and models will be learned from it. The focus should be on mountain
regions, as they offer diversified elevation models. The generated landscapes will be compared
with outputs from classical methods.

In a second step, procedures are to be developed based on this data set in order to be able
to join several models together.

Furthermore it is to be examined how realistic the generated landscapes are in comparison
to real world data.

1.3. Terrain Representation
1.3.1. World Geodetic System
The World Geodetic System (WGS) is a 3-dimensional coordinate reference frame for establishing
latitude, longitude and heights for navigation, positioning and targeting. The latest revision is
WGS84, established and maintained by the National Geospatial-Intelligence Agency since 1984.
WGS84 represents the best global geodetic reference system for the earth available at this time
for practical applications of cartography, geodesy, and satellite navigation including the Global
Positioning System (GPS). This standard includes the definition of the coordinate system’s
fundamental and derived constants. [2]

1.3.2. Web Mercator Projection
Web Mercator or WGS84/Pseudo-Mercator is a variant of the Mercator projection and is the de
facto standard for Web mapping applications. It rose to prominence when Google Maps adopted
it in 2005. It is used by virtually all major online map providers.

Web Mercator is a slight variant of the Mercator projection. It uses the same formulas as
the standard Mercator as used for small-scale maps. However, the Web Mercator uses the spher-
ical formulas at all scales whereas large-scale Mercator maps normally use the ellipsoidal form
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of the projection. The discrepancy is imperceptible at the global scale but causes maps of local
areas to deviate slightly from true ellipsoidal Mercator maps at the same scale. While the Web
Mercator’s formulas are for the spherical form of the Mercator, geographical coordinates are
required to be in the WGS 84 ellipsoidal datum. This discrepancy causes the projection to be
slightly non-conformal.

Web Mercator shares some of the same properties of the standard Mercator projection: north is
up everywhere, meridians are equally spaced vertical lines, but areas near the poles are greatly
exaggerated.

Unlike the ellipsoidal Mercator and spherical Mercator, the Web Mercator is not quite conformal
due to its use of ellipsoidal datum geographical coordinates against a spherical projection. The
benefit is that the spherical form is much simpler to calculate. [1]

1.3.3. Tiled Web Map
A tiled web map (or “slippy map” in OpenStreetMap terminology) is a map displayed in a
browser by seamlessly joining dozens of individually requested image or vector data files over
the Internet. It is the most popular way to display and navigate maps. Google Maps was one of
the first major mapping sites to use this technique. Most tiled web maps follow certain Google
Maps conventions and the de facto OpenStreetMap standard: [12]

1. Tiles are 256x256 pixels

2. An X and Y numbering scheme

3. The origin is top left

4. PNG images for tiles

5. At the outer most zoom level, 0, the entire world can be rendered in a single map tile.

6. Each zoom level doubles in both dimensions, so a single tile is replaced by 4 tiles when
zooming in.

7. The Web Mercator projection is used.

Figure 1.1.: Different zoom levels of a tiled map, represented as a pyramid, Source: MapTiler 1

1https://www.maptiler.com/tools/tiles-a-la-gmaps/img/pyramid.png
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To convert from the WGS84 geographic latitude and longitude coordinates to X and Y, the
following formulas are used: [16]

x =
⌊
lon+ 180◦

360◦ ∗ 2z
⌋

(1.1)

y =

1 −
ln
(

tan(lat ∗ π
180◦ ) + 1

cos(lat∗ π
180◦ )

)
π

 ∗ 2z−1

 (1.2)

lon = x

2z ∗ 360◦ − 180◦ (1.3)

lat = arctan
(

sinh
(
π − y

2z ∗ 2π
))

∗ 180◦

π
(1.4)

lat = Latitude

lon = Longitude

z = Zoom

Tiled web maps are limited at a latitude of around 85 degrees to make them square. This can
be calculated with the formula 1.4 with y = 0:

lat = arctan (sinh (π)) ∗ 180◦

π
≈ 85◦ (1.5)

Manuel Jordan 3



Landscape Generation with Generative Adversarial Networks

2. State of the Art

2.1. Introduction
The procedural creation of realistic landscapes for computer games is a long researched topic.
Classical algorithms like fractal noise functions are able to create reasonably realistic looking
landscapes, but they do not preserve all the features of real landscapes. More modern methods
therefore model geological processes such as erosion, which in turn is complex, or leave it to the
designer to manually create a realistic terrain.

2.2. Classical Approaches
The basic idea of the classical approaches is to use handcrafted algorithms to model structures and
processes from nature. On the one hand it is tried to reproduce the self-similarity of landscapes
with fractal functions. On the other hand geological processes like erosion are simulated to make
the landscapes more realistic.

2.2.1. Fractal Noise
Fractal structures can be created by scaled superposition of a basic function. For landscapes or
textures a gradient based noise function is often used. Well known examples are the Perlin-Noise
and the Simplex-Noise functions, developed by Ken Perlin [14]. Both are n-dimensional noise
functions, but the simplex noise requires less computational effort and is much more performant,
especially in higher dimensions, because its complexity increases with O(n2) more slowly than
the O(2n) with the Perlin noise. Compared to Perlin noise, simplex noise also has fewer direc-
tional artifacts and is therefore isotropic. [6]

Noise functions can be transformed to an 1
f -noise by superposition. The value for each pixel

is: [17, p. 169ff]

Pxy =
n∑
i=0

Noise(x ∗ 2i, y ∗ 2i)
2i (2.1)

Figure 2.1 demonstrates the application to the Simplex-Noise.
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(a) Simplex-Noise (b) 1
f

Simplex-Noise

Figure 2.1.: Conversion of the Simplex-Noise to an 1
f -noise

2.2.2. Diamond-Square
A simple alternative way to create two-dimensional fractal structures is the Diamond-Square-
Algorithm by Fournier et al.[5]. In this algorithm, the center of the outermost square is determ-
ined starting from four corner points with a random value. This corresponds to the mean value
of the corner points plus a random value. This step is carried out alternately diagonally and
orthogonally for the newly created square and diamond shapes (see figure 2.2).[17, p. 169ff]

(a) Diamond step (b) Square step (c) Diamond step

Figure 2.2.: Procedure of the Diamond-Square-Algorithm

2.2.3. Hydraulic Erosion
Both presented methods were accused of being flawed since generated mountains and valleys
showed similar features and the terrain has the same visual characteristics when mirrored upside-
down. This particular feature can not be found in nature because of the effects of erosion.

The first algorithm to simulate hydraulic erosion on a terrain was introduced by Musgrave et
al. [13] in 1989. The introduced procedure adds water to the vertices of a terrain mesh gener-
ated from a heightmap. This water then flows to all lower neighbouring vertices. During this
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process sediment is taken from higher vertices and distributed to lower ones as it occurs in nature.

A sample implementation by Sebastian Lague shows the effect of the erosion. Figure 2.3 shows
the comparison of an uneroded landscape to an eroded one.

(a) Fractal noise (b) Eroded fractal noise

Figure 2.3.: Effect of a simulated erosion, Source: Sebastian Lague 1

2.3. Novel Approaches
Recent years have seen major progress in generating images, videos and text, notably using
GANs. Along with autoencoders, GANs are nowadays popular models for generating images.
Jaydeep T. Chauhan [4] provides a comparative analysis of these two generative models on basis
of their objective, performance and architecture. Both models have their own pros and cons.
In general it can be said that a GAN tends to produce sharper and more realistic images than
a autoencoder. But a GAN is also more difficult to train, a it is based on the zero-sum non-
cooperative game, also called minimax game. In game theory, the GAN model converges when
the discriminator and the generator reach a Nash equilibrium.

lossD = − log(D(x)) − log(1 −D(G(z))) (2.2)

lossG = log(1 −D(G(z))) (2.3)

A special form of the GAN is normally used for image generation: a deep convolutional generative
adversarial network (DCGAN) [15]. It uses convolutions and transposed convolutions instead of
fully connected layers.

1https://sebastian.itch.io/hydraulic-erosion
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Figure 2.4.: Structure of a GAN

For the generation of 3D landscapes Christopher Beckham and Christopher Joseph Pal [3] have
already established a foundation. They divided the generation into two steps. First, a height-
map is generated with a DCGAN. In a second step a picture-to-picture network [8] (also called
pix2pix) is used to generate a matching texture from the heightmap.

As training data they used high-resolution terrain and heightmap data provided by the Na-
tional Aeronautics and Space Administration (NASA) “Visible Earth” project2. This data is
addressed again in chapter 3.2.1.

According to the authors the most obvious next step for future work would be to jointly train
the DCGAN and pix2pix GANs for performance and quality optimizations.

2.4. Conclusion
In their work Beckham an Pal have achieved a reasonable first step toward procedural generation
of terrain based on real-world data. A major advantage over classical approaches is that the
texture of the landscape can also be generated. In addition, the new approach allows to generate
much more diverse landscapes, which, however, depends strongly on the training data. But the
authors also mention problems such as the need to train two models. Furthermore, landscapes
are hardly scalable with the current solution, while the classical approaches make this possible,
albeit with a strong increase in computing effort.

2https://visibleearth.nasa.gov/
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3. Methods

3.1. Concept
The basis for this study is the work of Beckham and Pal [3]. This thesis tries to solve the known
problems of the original model and make the output scalable. In order not to train two models
in parallel, we suggest to process the height and texture data in a single network. The height
data can be considered as an additional color channel in the texture image. For this purpose,
the usual RGBA format can be used, where the transparency simply represents the elevation.
With this approach, the system can be reduced to a single DCGAN that uses an RGBA image
as input and output.

The exact model is described in chapter 3.3 a possible method for upscaling the images is presen-
ted in chapter 3.4. To measure the quality of the generated landscapes a survey is carried out,
which is described in chapter 3.5.

3.2. Training Data
To train the neural network, a data set must be created that consists of RGBA images containing
height and texture data as in figure 3.1. The acquisition and preparation of the training data is
explained below.

(a) red (b) green (c) blue (d) alpha

Figure 3.1.: Channels of a sample tile

3.2.1. Data Acquisition
The training data (figure 3.2) that Beckham and Pal [3] used are not well suited, as they only
show very macroscopic landscapes. Due to the spatial resolution of 1 square km per pixel no
fine details can be displayed. Furthermore the maps are only available in an equirectangular
projection, which is not conformal in contrast to the Mercator projection. Thus, the further
away areas are from the equator the more they are distorted.
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(a) world elevation data 1 (b) world texture data 2

Figure 3.2.: Heightmap and texture provided by NASA’s “Visible Earth” project

As an ideal data source are providers of tiled web maps, because they allow different zoom levels
and therefore more details. The following providers were found who offer freely accessible height
and/or texture data - albeit with a limited number of requests:

MapTiler: satellite imagery, RGB encoded elevation data (zoom level 0-10) [11]

MapBox: satellite imagery, RGB encoded elevation data (zoom level 0-14) [10][9]

Here: satellite imagery [7]

The elevation data is usually encoded with RGB values. The resulting height in meters can be
calculated with the following formula: [9]

height = −10000 + ((R ∗ 256 ∗ 256 +G ∗ 256 +B) ∗ 0.1) (3.1)

Figure 3.3 shows a sample heightmap from the data provided with its conversion to a grayscale
image.

(a) RGB encoded (b) converted to grayscale

Figure 3.3.: Sample heightmap

1https://visibleearth.nasa.gov/images/73934/topography
2https://visibleearth.nasa.gov/images/74092/july-blue-marble-next-generation
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All three data providers use different satellite images and thus offer a varying quality. The
matching textures from the tile in figure 3.3 is shown in figure 3.4. It is obvious to see, that
MapBox provides the poorest quality, as the pictures have only little contrast and also show
clouds. “Here” offers much more details, but the colors seem unnaturally bright and oversatur-
ated. Also in this case some clouds are still visible. MapTiler provides the most suitable images,
as the colors appear natural, the image is not blurred and no clouds are visible.

(a) MapBox (b) Here (c) MapTiler

Figure 3.4.: Satellite image quality

When selecting the areas for the training, care was taken to use similar mountain ranges. The
training data consists mainly of folded mountains from the Alpide belt.

Name Location Rectangle Coordinates (Latitude / Longitude)

Western Alps France (46.6/5.3), (43.95/7.9)

Eastern Alps Austria / Italy (47.9/11.4), (46.1/15)

Central Alps Switzerland (47.5/7.3), (45.9/12.1); (47.2/7), (45.6/8.5)

Pyrenees France / Spain (43/-0.9), (42.15/2.5)

Caucasus Georgia / Russia (43.9/40.3), (43.2/41.5); (43.5/41.5), (42.7/43.7);
(43/43.3), (42.2/46.4)

Jotunheimen Norway (62.4/5.6), (60.5/9); (61.9/5.2), (59/7.4)

Southern Alps New Zealand (-45.2/167), (-46.1/167.4); (-44.4/167.9), (-45/169)

Table 3.1.: Mountain ranges included in the training data

With the exception of Jotunheimen, all the regions used are so-called fold mountains. Other
well-known and large mountain ranges were not included in the data set, for example:

Northern Rocky Mountains: The elevation data shows strong artifacts

Himalaya: The elevation data are far beyond the range of the other mountains in the data set.
The Himalaya with altitudes up to 8848 meters would be the only mountain range in the
data set with altitudes above 6000 meters.
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3.2.2. Data Preprocessing
For the training, the raw data from chapter 3.2.1 must still be prepared. First the heightmap
is converted into a grayscale image. For this, each pixel is assigned a value between 0 and 255
according to its height (from equation 3.1) with the following formula:

pixelvalue = max
(

min
(⌊

height ∗ 255
5000

⌋
, 255

)
, 0
)

(3.2)

After texture and elevation data have been combined into one image, a data augmentation is
performed. The definition of the function is shown in figure 3.5 and performs the following
operations:

1. random crop (no rotation)

2. random 90 degree rotation

3. random horizontal and vertical flip

1 def augment(img):
2 img = tf.image.random_crop(img, [IMG_WIDTH, IMG_HEIGHT, 4])
3 img = tf.image.random_flip_left_right(img)
4 img = tf.image.random_flip_up_down(img)
5 img = tf.image.rot90(img, tf.random.uniform(shape=[], minval=0, maxval=4,

dtype=tf.int32))
6 return img

Figure 3.5.: Definition of the data augmentation using Tensorflow

3.3. Models
The base model is a DCGAN. The following definitions are based on the recommendations of
Radford et al. [15] and Beckham et al. [3].

The generator consists of six upsampling stages. One stage consists of:

1. transposed convolution to upsample by the factor 2

2. batch normalization

3. ReLU activation layer

The complete definition of the generator is given in figure 3.6.
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1 def gan_g_layer(model, nFilter, resizeConv=False):
2 if resizeConv:
3 model.add(layers.UpSampling2D(size=(2, 2), interpolation=’bilinear’))
4 model.add(layers.Conv2D(nFilter, (5, 5), strides=(1, 1), padding=’same’))
5 else:
6 model.add(layers.Conv2DTranspose(nFilter, (4,4), strides=(2, 2), padding=’same’,

use_bias=False))
7 model.add(layers.BatchNormalization())
8 model.add(layers.ReLU())
9

10 def make_generator_model():
11 model = tf.keras.Sequential()
12 model.add(layers.Dense(4*4*512, use_bias=False, input_shape=(noise_dim,)))
13 model.add(layers.BatchNormalization())
14 model.add(layers.ReLU())
15 model.add(layers.Reshape((4, 4, 512)))
16

17 gan_g_layer(model, 512)
18 gan_g_layer(model, 512)
19 gan_g_layer(model, 256)
20 gan_g_layer(model, 256)
21 gan_g_layer(model, 128)
22 gan_g_layer(model, 128)
23

24 model.add(layers.Conv2D(4, (5, 5), strides=(1, 1), padding=’same’, use_bias=False,
activation=’tanh’))

25 assert model.output_shape == (None, IMG_WIDTH, IMG_HEIGHT, 4)
26

27 return model

Figure 3.6.: Definition of the generator in python using Keras

The discriminator consists of five downsampling stages. One stage consists of:

1. convolution to downsample by the factor 2

2. batch normalization

3. leaky ReLU activation layer

4. dropout with a rate of 30%
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1 def gan_d_layer(model, nFilter):
2 model.add(layers.Conv2D(nFilter, (5, 5), strides=(2, 2), padding=’same’))
3 model.add(layers.BatchNormalization())
4 model.add(layers.LeakyReLU())
5 model.add(layers.Dropout(0.3))
6

7 def make_discriminator_model(channels):
8 model = tf.keras.Sequential()
9 model.add(layers.Conv2D(32, (5, 5), strides=(2, 2), padding=’same’,

input_shape=[IMG_WIDTH, IMG_HEIGHT, channels]))
10 model.add(layers.LeakyReLU())
11 model.add(layers.Dropout(0.3))
12

13 gan_d_layer(model, 64)
14 gan_d_layer(model, 128)
15 gan_d_layer(model, 256)
16 gan_d_layer(model, 512)
17 gan_d_layer(model, 512)
18

19 model.add(layers.Flatten())
20 model.add(layers.Dense(1, activation=’sigmoid’))
21

22 return model

Figure 3.7.: Definition of the discriminator in python using Keras

The overall model can be represented as follows:

Figure 3.8.: Simple GAN model

During the test phase of this model the problem arose that the heightmap was always very blurry,
so another model was defined. This advanced model includes a second discriminator which only
evaluates the heightmap. Both discriminators together determine the loss of the generator in
equal parts.

In contrast to the simple model, the heightmap now receives a higher weighting, because oth-
erwise it would be underrepresented with only one channel compared to three channels for the
texture.
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Figure 3.9.: Advanced GAN model with two discriminators

3.4. Tile composition
To combine several tiles and create a larger map, we can use existing algorithms. Since our
model is only a single GAN, image painting methods from Yeh et al. [18] can be applied. They
formulate an optimization problem in which the latent vector z is adjusted in such a way that
the loss of the generated image is as small as possible.

ẑ = arg minL(z)
x

(3.3)

The loss is composed of:

Contextual loss: distance between known parts of image and reconstruction

Perceptual loss: log likelihood of G(z) not being real according to D

L(z) = Lcontextual(z) + λ ∗ Lperceptual(z) (3.4)

Lcontextual(z) = (M �G(z) −M � xcorrupted)2 (3.5)

Lperceptual(z) = log(1 −D(G(z))) (3.6)

The reconstructed image can be found as

xreconstructed = M � xcorrupted + (1 −M) �G(z) (3.7)

where M is a binary mask (same size as xcorrupted, 0 for missing/corrupted pixels) and � is the
element wise product of two matrices).

For the application to our case only the contextual loss has to be reformulated. The optim-
izer has to find matching height profiles and textures along one or two edges. The loss is the
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distance between the pixels of the overlapping region of two adjacent tiles (marked as purple in
figure 3.10)

Lcontextual(zm+1,n) = (RightBorder(G(zm,n)) − LeftBorder(G(zm+1,n)))2 (3.8)

Figure 3.10.: Overlapping tiles

If a tile has several neighbors, the loss function is extended to the corresponding edges.

Lcontextual(zm+1,n+1) = (RightBorder(G(zm,n+1)) − LeftBorder(G(zm+1,n+)))2+
(LowerBorder(G(zm+1,n)) − UpperBorder(G(zm+1,n+)))2 (3.9)

Figure 3.11.: Composed tiles

3.5. Quality evaluation
In order to measure the quality of the generated landscapes, a survey is carried out in which the
probands are asked to distinguish between real and generated landscapes. The survey consists
of two parts:

1. single tiles

2. composed tiles using the procedure from chapter 3.4

In both parts, the participants have to assess 50 landscapes each, half of which are generated.
In order to avoid biases as much as possible, the probands are not told how many of the given
images are generated. Furthermore, the images are presented to each subject in random order.
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4. Results

4.1. Training
For training the Adam optimizer was always used with an learning rate (LR) of 1e−5, if not
stated otherwise. The results of the simple model are not listed, as it was replaced by the more
advanced model with two discriminators during the course of the work. The loss curves of the
best models are listed in figure 4.1. It should be noted that, for simplicity, only the loss from
the first discriminator is shown, since both are practically identical. The legend of the graph is
listed in table 4.1.

(a) generator loss (b) discriminator 1 loss

Figure 4.1.: Loss curves

Color Generator config LRG # Generator Params Latent space size

Orange 512-256-256-128-128-64 0.0001 9,323,584 100

Blue 512-512-256-256-128-12 0.0002 13,172,736 100

Purple 512-512-256-256-128-128 0.0002 14,450,688 256

Table 4.1.: Best performing models

The specified configuration refers to the depth of the respective convolutional layer.

4.2. Survey Results
The results of the survey are listed and interpreted below. A total of 120 people took part in
the survey. The images to be evaluated are all derived from the most recent and largest model
(purple model in table 4.1).

In the optimal case there would be an overall accuracy (= proportion of correctly identified
images) of 50%. This would mean that the images are not distinguishable from each other and
on average every second image is correctly guessed.
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Another important measure is the false positive rate, which shows how many of the generated
images were considered real. In the best case this would be 100%.

In the following chapters the samples are presented as in figure 4.2. The corresponding per-
centage always corresponds to the percentage of subjects who rated the corresponding landscape
as real.

Figure 4.2.: Sample output image for the survey with heightmap (top-left), texture (top-right)
and 3D rendered mesh (bottom), rating = 62.5%

4.2.1. Single Tiles
In the first part of the survey the quality of the individual tiles was examined. The test persons
achieved an overall accuracy of 58.9%. This means that in many cases they had great difficulty in
distinguishing the images. The false positive rate is 44.7%. Thus, almost every second generated
tile was considered real. The very low accuracy also shows that many real tiles were rated as fake.

Figures 4.3 and 4.4 show the best and worst rated samples of the generated and real tiles.
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(a) best rated (81.7%) (b) worst rated (32.5%)

Figure 4.3.: Real world sample

(a) best rated (76.7%) (b) worst rated (13.3%)

Figure 4.4.: Generated sample

Some generated tiles show artifacts like repetitive patterns. Some test persons have also noticed
the generally poorer quality (e.g. blurry). On closer examination, a few probands also noticed
illogical topographies or wrong shadow casts.

4.2.2. Composed Tiles
In the second part of the survey the quality of the composed tiles was examined. The test per-
sons achieved an overall accuracy of 69.7%. This means that in many cases they had only little
difficulty in distinguishing the images. The false positive rate is 29.7%. Thus, barely every third
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generated tile was considered real.

Figures 4.5 and 4.6 show the best and worst rated samples of the generated and real tiles.

(a) best rated (85%) (b) worst rated (43.3%)

Figure 4.5.: Real world sample

(a) best rated (50.8%) (b) worst rated (9.2%)

Figure 4.6.: Generated sample

Most criticised were the visible borders of the composite tiles. Often the colors do not match
either. Figure 4.7 shows a map where both flaws are strongly visible.
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Figure 4.7.: Badly rated (17.5%) map with strongly visible edges and unfitting color hues
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5. Discussion

5.1. Evaluation
The results from chapter 4 show that the model is quite capable of producing realistic landscapes.
Even if only 45% of the tiles were found to be real, some of them could fool up to 77% of the
test persons. It is interesting to note that several real pictures were also classified as false. These
are rather flat and barren landscapes. From this it could be deduced that for humans diversified
landscapes are generally more realistic.

The composite tiles perform much worse, more than two thirds of the images were correctly
classified. The generated images still show many artifacts and the composing algorithm has
problems to follow all restrictions (matching height profiles and texture along two edges). Either
the search space is too small or the optimizer gets stuck too early in a local optimum.

In summary, it can be said that the new approach allows to generate much more diverse land-
scapes, which, however, depends strongly on the training data. In principle, it would be possible
to combine several tiles with the proposed algorithm, but it works very unreliably.

5.2. Problems
The biggest problem is the compositional algorithm. It rarely manages to match texture and
height profile on all edges. Different approaches like a larger latent space did not show any effect.

The choice of training dates may also be disadvantageous, as the tiles may have very differ-
ent color shades, but not all of them are equally frequent in the dataset.

5.3. Future Work
The most obvious point to work on in the future is the composing algorithm. It must be able to
work more reliably. Maybe the whole model has to be adapted and conditional GANs or similar
have to be used.

Another aspect is the training data. These should be more diversified so that the model has
enough freedom to find a suitable neighbour for each tile.
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A. Appendix

A.1. Used software
A.1.1. Modeling and Training
https://github.com/Major94/Terrain_Generation_GAN

Tensorflow and Keras using Jupyter Notebooks on Python

1. Model definition

2. Model training

3. complete dataset

A.1.2. Data Acquisition
https://github.com/Major94/TerrainGeneration

Windows Forms Application on C#

1. image download

2. image conversion

A.1.3. Data Visualization
https://github.com/Major94/3D_Terrain

Unity 3D Engine on C#

1. 3D mesh render from grayscale or RGB heightmap

2. create tile preview with heightmap, texture und 3D mesh
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